前瞻科技 ›› 2024, Vol. 3 ›› Issue (3): 61-74.DOI: 10.3981/j.issn.2097-0781.2024.03.005
收稿日期:
2024-06-14
修回日期:
2024-07-01
出版日期:
2024-09-20
发布日期:
2024-09-18
通讯作者:
†
作者简介:
李玲,教授,博士研究生导师。黑龙江省自然科学基金优秀青年项目获得者。主要从事微纳器件与系统的基础研究。电气与电子工程师协会(IEEE)哈尔滨电子器件分会秘书、高级会员,中国微米纳米学会传感器技术分会理事。主持多个省部级科研项目。电子信箱:linglimems@hit.edu.cn。基金资助:
LI Ling(), YAN Tingwei, ZHANG Yufeng†(
)
Received:
2024-06-14
Revised:
2024-07-01
Online:
2024-09-20
Published:
2024-09-18
Contact:
†
摘要:
5G通信、人工智能、物联网等领域的快速发展对现有的通信系统提出了苛刻的要求。目前,具有低延时、低功耗、大容量等特点的光互连作为新通信方案受到广泛关注,其中基于硅基光电子技术的光互连是最佳的技术选择之一。作为核心器件的硅基锗光电探测器对于硅基光互连的发展至关重要。文章对硅基锗光电探测器技术发展进行阐述分析,系统总结高性能硅基锗光电探测器的新型结构、关键工艺和发展过程中的技术创新,展望其发展趋势和热点技术与研究方向,以期为中国光通信系统建设和发展提供支持。
李玲, 闫亭伟, 张宇峰. 硅基锗光电探测器的发展现状与未来趋势[J]. 前瞻科技, 2024, 3(3): 61-74.
LI Ling, YAN Tingwei, ZHANG Yufeng. Current Status and Future Trends of Silicon-based Germanium Photodetectors[J]. Science and Technology Foresight, 2024, 3(3): 61-74.
锗尺寸 | 波长/nm | 量子效率/% | 3 dB带宽/GHz | 暗电流浓度/(mA·cm-2) | 文献 |
---|---|---|---|---|---|
D=10 μm H=300 nm | 1 552 | 2.8 | 38.9 | — | [ |
D=12 μm | 1 550 | — | 48.0 | 3.4 | [ |
H=960 nm | 1 590 | — | — | — | [ |
H=600 nm | 1 550 | — | 58.0 | — | [ |
H=280 nm | 1 550 | 70.0 | 66.0 | — | [ |
H=2 000nm | 1 550 | 73.0 | — | 50.0 | [ |
H=350 nm | 1 550 | 50.0 | 33.0 | 58.0 | [ |
表1 典型面入射硅基锗光电探测器总结
Table 1 Typical surface incident silicon-based germanium photodetectors
锗尺寸 | 波长/nm | 量子效率/% | 3 dB带宽/GHz | 暗电流浓度/(mA·cm-2) | 文献 |
---|---|---|---|---|---|
D=10 μm H=300 nm | 1 552 | 2.8 | 38.9 | — | [ |
D=12 μm | 1 550 | — | 48.0 | 3.4 | [ |
H=960 nm | 1 590 | — | — | — | [ |
H=600 nm | 1 550 | — | 58.0 | — | [ |
H=280 nm | 1 550 | 70.0 | 66.0 | — | [ |
H=2 000nm | 1 550 | 73.0 | — | 50.0 | [ |
H=350 nm | 1 550 | 50.0 | 33.0 | 58.0 | [ |
锗尺寸 | 波长/nm | 响应度/(A·W-1) | 3 dB 带宽/GHz | 暗电流密度/nA | 文献 |
---|---|---|---|---|---|
H=400 nm | 1 550 | 0.89 | 80.0 | 6.4 | [ |
H=340 nm | 1 550 | 1.00 | 42.0 | — | [ |
D=3 μm | 1 580 | 0.78 | 67.0 | 6.4 | [ |
D=8 μm | 1 550 | 1.09 | 42.5 | 3 500.0 | [ |
H=350 nm | 1 550 | 1.44 | 40.0 | 1 000.0 | [ |
H=800 nm | 1 550 | 0.89 | 31.3 | 169.0 | [ |
H=260 nm | 1 550 | 0.80 | — | 150.0 | [ |
H=400 nm | 1 550 | 0.30 | 265.0 | 100.0~200.0 | [ |
表2 典型硅基锗波导光电探测器总结
Table 2 Typical silicon-based germanium waveguide photodetectors
锗尺寸 | 波长/nm | 响应度/(A·W-1) | 3 dB 带宽/GHz | 暗电流密度/nA | 文献 |
---|---|---|---|---|---|
H=400 nm | 1 550 | 0.89 | 80.0 | 6.4 | [ |
H=340 nm | 1 550 | 1.00 | 42.0 | — | [ |
D=3 μm | 1 580 | 0.78 | 67.0 | 6.4 | [ |
D=8 μm | 1 550 | 1.09 | 42.5 | 3 500.0 | [ |
H=350 nm | 1 550 | 1.44 | 40.0 | 1 000.0 | [ |
H=800 nm | 1 550 | 0.89 | 31.3 | 169.0 | [ |
H=260 nm | 1 550 | 0.80 | — | 150.0 | [ |
H=400 nm | 1 550 | 0.30 | 265.0 | 100.0~200.0 | [ |
[1] | Cui C C, Zhou C B, Yuan S, et al. Multiple fano resonances in symmetry-breaking silicon metasurface for manipulating light emission[J]. ACS Photonics, 2018, 5(10): 4074-4080. |
[2] | Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349-354. |
[3] | Yang Y H, Yamagami Y, Yu X B, et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020, 14(7): 446-451. |
[4] | Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: Recent trends and future challenges[J]. IEEE Communications Magazine, 2013, 51(9): 39-45. |
[5] | Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 2021, 39(13): 4374-4389. |
[6] | Pérez-Armenta C, Ortega-Moñux A, Luque-González J M, et al. Polarization insensitive metamaterial engineered multimode interference coupler in a 220 nm silicon-on-insulator platform[J]. Optics & Laser Technology, 2023, 164, doi:10.1016/j.optlastec.2023.109493. |
[7] | Sitbon E, Ostrovsky R, Malka D. Optimizations of thermo-optic phase shifter heaters using doped silicon heaters in Rib waveguide structure[J]. Photonics and Nanostructures-Fundamentals and Applications, 2022, 51, doi: 10.1016/j.photonics.2022.101052. |
[8] | Witzens J. High-speed silicon photonics modulators[J]. Proceedings of the IEEE, 2018, 106(12): 2158-2182. |
[9] | 李浩杰, 冯松, 胡祥建, 等. 不同结构及新型材料在硅基光电探测器上的应用展望[J]. 航空兵器, 2024, 31(1): 13-22. |
Li H J, Feng S, Hu X J, et al. Application prospects of different structures and new materials in silicon based photodetectors[J]. Aero Weaponry, 2024, 31(1): 13-22. (in Chinese) | |
[10] | 刘智, 成步文. 硅基锗PIN光电探测器的研究进展[J]. 半导体光电, 2022, 43(2): 261-266. |
Liu Z, Cheng B W. Research progresses of Si-based Ge PIN photodetectors[J]. Semiconductor Optoelectronics, 2022, 43(2): 261-266. (in Chinese) | |
[11] | Zhang N N, Hao Y K, Shao J F, et al. Detection properties of Ge MSM photodetector enhanced by Au nanoparticles[J]. IEEE Transactions on Electron Devices, 2023, 70(10): 5288-5293. |
[12] |
Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate[J]. Optics Express, 2007, 15(21): 13965-13971.
PMID |
[13] | Mauthe S, Baumgartner Y, Sousa M, et al. High-speed Ⅲ-Ⅴ nanowire photodetector monolithically integrated on Si[J]. Nature Communications, 2020, 11, doi: 10.1038/s41467-020-18374-z. |
[14] | Campbell J C. Evolution of low-noise avalanche photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2: Optical Detectors), doi: 10.1109/JSTQE.2021.3092963. |
[15] | Izhnin I I, Lozovoy K A, Kokhanenko A P, et al. Single-photon avalanche diode detectors based on group IV materials[J]. Applied Nanoscience, 2022, 12(3): 253-263. |
[16] | Thraskias C A, Lallas E N, Neumann N, et al. Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2758-2783. |
[17] | Dorodnyy A, Salamin Y, Ma P, et al. Plasmonic photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6), doi: 10.1109/JSTQE.2018.2840339. |
[18] | Dehlinger G, Koester S J, Schaub J D, et al. High-speed germanium-on-SOI lateral PIN photodiodes[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2547-2549. |
[19] | Klinger S, Berroth M, Kaschel M, et al. Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz[J]. IEEE Photonics Technology Letters, 2009, 21(13): 920-922. |
[20] |
Fang Q, Jia L X, Song J F, et al. Demonstration of a vertical pin Ge-on-Si photo-detector on a wet-etched Si recess[J]. Optics Express, 2013, 21(20): 23325-23330.
DOI PMID |
[21] |
Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide[J]. Optics Express, 2009, 17(8): 6252-6257.
PMID |
[22] | Ramaswamy A, Piels M, Nunoya N, et al. High power silicon-germanium photodiodes for microwave photonic applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3336-3343. |
[23] | Jutzi M, Berroth M, Wohl G, et al. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1510-1512. |
[24] | Xue H Y, Xue C L, Cheng B W, et al. Zero biased Ge-on-Si photodetector with a bandwidth of 4.72 GHz at 1550 nm[J]. Chinese Physics B, 2009, 18(6): 2542-2544. |
[25] | 宁宁, 潘伯津, 黄烁, 等. 硅基光电子工艺中集成锗探测器的工艺挑战与解决方法[J]. 数字技术与应用, 2023, 41(8): 142-145, 239. |
Ning N, Pan B J, Huang S, et al. Technological challenges and solutions of integrated germanium detector in silicon-based optoelectronic process[J]. Digital Technology & Application, 2023, 41(8): 142-145, 239. (in Chinese) | |
[26] |
Gould M, Baehr-Jones T, Ding R, et al. Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking[J]. Optics Express, 2012, 20(7): 7101-7111.
DOI PMID |
[27] | Shi Y, Zhou D, Yu Y, et al. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering[J]. Photonics Research, 2021, 9(4): 605-609. |
[28] |
Chen H, Verheyen P, De Heyn P, et al. -1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond[J]. Optics Express, 2016, 24(5): 4622-4631.
DOI PMID |
[29] |
Pan C P, Wu Q, Zhang Q, et al. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors[J]. Optics Express, 2017, 25(9): 9768-9777.
DOI PMID |
[30] | Hsu C Y, Pei Z W, Liu J M. High-absorbance resonant-cavity-enhanced free-standing Ge photodetector for infrared detection at 1550 nm wavelength[J]. AIP Advances, 2023, 13(7), doi: 10.1063/5.0152110. |
[31] | Liu Z, Yang F, Wu W Z, et al. 48 GHz high-performance Ge-on-SOI photodetector with zero-bias 40 Gbps grown by selective epitaxial growth[J]. Journal of Lightwave Technology, 2017, 35(24): 5306-5310. |
[32] |
Ghosh S, Lin K C, Tsai C H, et al. Resonant-cavity-enhanced responsivity in germanium-on-insulator photodetectors[J]. Optics Express, 2020, 28(16): 23739-23747.
DOI PMID |
[33] |
Zhu A Y, Zhu S Y, Lo G Q. Guided mode resonance enabled ultra-compact germanium photodetector for 155 μm detection[J]. Optics Express, 2014, 22(3): 2247-2258.
DOI PMID |
[34] | Liu Z, Liu J T, Cheng B W, et al. Enhanced light trapping in Ge-on-Si-on-insulator photodetector by guided mode resonance effect[J]. Journal of Applied Physics, 2018, 124(5), doi: 10.1063/1.5031453. |
[35] | Krasnok A, Caldarola M, Bonod N, et al. Spectroscopy and biosensing with optically resonant dielectric nanostructures[J]. Advanced Optical Materials, 2018, 6(5), doi: 10.1002/adom.201701094. |
[36] | Prasad A, Choi J, Jia Z, et al. Nanohole array plasmonic biosensors: Emerging point-of-care applications[J]. Biosensors & Bioelectronics, 2019, 130: 185-203. |
[37] | Cansizoglu H, Bartolo-Perez C, Gao Y, et al. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm[J]. Photonics Research, 2018, 6(7): 734-742. |
[38] | Song J W, Yuan S, Cui C C, et al. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal[J]. Nanophotonics, 2021, 10(3): 1081-1087. |
[39] |
Byrd M J, Timurdogan E, Su Z, et al. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors[J]. Optics Letters, 2017, 42(4): 851-854.
DOI PMID |
[40] |
Kang J, Takagi S, Takenaka M. Ge photodetector monolithically integrated with amorphous Si waveguide on wafer-bonded Ge-on-insulator substrate[J]. Optics Express, 2018, 26(23): 30546-30555.
DOI PMID |
[41] | Chen D G, Zhang H G, Liu M, et al. 67 GHz light-trapping-structure germanium photodetector supporting 240 Gb/s PAM-4 transmission[J]. Photonics Research, 2022, 10(9): 2165-2171. |
[42] | Dong P, Liu X, Chandrasekhar S, et al. Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4), doi: 10.1109/JSTQE.2013.2295181. |
[43] |
Fard M M P, Cowan G, Liboiron-Ladouceur O. Responsivity optimization of a high-speed germanium-on-silicon photodetector[J]. Optics Express, 2016, 24(24): 27738-27752.
DOI PMID |
[44] |
Li G L, Luo Y, Zheng X Z, et al. Improving CMOS-compatible germanium photodetectors[J]. Optics Express, 2012, 20(24): 26345-26350.
DOI PMID |
[45] |
Zhang Y, Yang S Y, Yang Y S, et al. A high-responsivity photodetector absent metal-germanium direct contact[J]. Optics Express, 2014, 22(9): 11367-11375.
DOI PMID |
[46] | Li X L, Zhu Y P, Liu Z, et al. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. Journal of Semiconductors, 2023, 44(1), doi: 10.1088/1674-4926/44/1/012301. |
[47] |
Benedikovic D, Virot L, Aubin G, et al. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures[J]. Photonics Research, 2019, 7(4): 437-444.
DOI |
[48] | Benedikovic D, Virot L, Aubin G, et al. Comprehensive study on chip-integrated germanium pin photodetectors for energy-efficient silicon interconnects[J]. IEEE Journal of Quantum Electronics, 2020, 56(1), doi:10.1109/JQE.2019.2954355. |
[49] |
Virot L, Benedikovic D, Szelag B, et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction[J]. Optics Express, 2017, 25(16): 19487-19496.
DOI PMID |
[50] | Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz[J]. Nature Photonics, 2021, 15: 925-931. |
[51] | Piels M, Bowers J E. 40 GHz Si/Ge uni-traveling carrier waveguide photodiode[J]. Journal of Lightwave Technology, 2014, 32(20): 3502-3508. |
[52] | Wu X Y, Yu H, Fu Z L, et al. A silicon aperiodically distributed traveling-wave photodetector with enhanced RF output power[J]. Journal of Lightwave Technology, 2018, 36(16): 3152-3161. |
[53] |
Bogaert L, van Gasse K, Spuesens T, et al. Silicon photonics traveling wave photodiode with integrated star coupler for high-linearity mm-wave applications[J]. Optics Express, 2018, 26(26): 34763-34775.
DOI PMID |
[54] |
Zuo Y, Yu Y, Zhang Y, et al. Integrated high-power germanium photodetectors assisted by light field manipulation[J]. Optics Letters, 2019, 44(13): 3338-3341.
DOI PMID |
[55] | Cui J S, Li T T, Yang F H, et al. The dual-injection Ge-on-Si photodetectors with high saturation power by optimizing light field distribution[J]. Optics Communications, 2021, 480, doi: 10.1016/j.optcom.2020.126467. |
[56] | Zhou D, Yu Y, Yang N, et al. Germanium photodetector with alleviated space-charge effect[J]. IEEE Photonics Technology Letters, 2020, 32(9): 538-541. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号