[1] |
蒋庄德. 微纳制造, 螺蛳壳里做道场[J]. 知识就是力量, 2016(5): 3.
|
|
Jiang Z D. Micro nano manufacturing, using snail shells as a dojo[J]. Knowledge is Power, 2016(5): 3. (in Chinese)
|
[2] |
Tosello G. Micro/nano manufacturing[J]. Micromachines, 2017, 8(10): 297.
|
[3] |
Takahashi S. Precision measurement in Heisei: A review—Development of optical measurement supporting nano/micro manufacturing[J]. Journal of the Japan Society for Precision Engineering, 2020, 86(1): 8-12.
|
[4] |
黄寅明. 基于微纳加工技术的光子结构设计[D]. 南宁: 广西大学, 2023.
|
|
Huang Y M. Photonic structure design based on micro/nano processing technology[D]. Nanjing: Guangxi University, 2023. (in Chinese)
|
[5] |
崔兴毅. 离子注入机: 二十八纳米工艺实现全覆盖[N]. 光明日报, 2024-01-26(001).
|
|
Cui X Y. Ion implantation machine: achieving full coverage through 28 nanometer technology[N]. Guangming Daily, 2024-01-26(001). (in Chinese)
|
[6] |
高羡明, 楚亚龙, 朱朝飞, 等. 液体毛细力驱动的微纳组装技术的研究进展[J]. 微纳电子技术, 2023, 60(10): 1551-1563.
|
|
Gao X M, Chu Y L, Zhu C F, et al. Research progress on micro nano assembly technology driven by liquid capillary force[J]. Micro Nano Electronic Technology, 2023, 60(10): 1551-1563. (in Chinese)
|
[7] |
Chen Y Y, Chen D X, Liang S Z, et al. Recent advances in field-controlled micro-nano manipulations and micro-nano robots[J]. Advanced Intelligent Systems, 2022, 4(3), doi: 10.1002/aisy.202100116.
|
[8] |
Li C S, Pan R H, Gu C Z, et al. Reconfigurable micro/nano-optical devices based on phase transitions: From materials, mechanisms to applications[J]. Advanced Science, 2024, 11(20), doi: 10.1002/advs.202306344.
|
[9] |
钟山, 高炳涛, 岑格, 等. 微纳力值测量技术发展现状与分析[J]. 宇航计测技术, 2021, 41(6): 68-75.
|
|
Zhong S, Gao B T, Cen G, et al. Development status and analysis of micro nano force measurement technology[J]. Journal of Astronautic Metrology and Measurement, 2021, 41(6): 68-75. (in Chinese)
|
[10] |
Zang H F, Zhang Z Y, Huang Z T, et al. High-precision two-dimensional displacement metrology based on matrix metasurface[J]. Science Advances, 2024, 10(2), doi: 10.1126/sciadv.adk2265.
|
[11] |
王琛英, 景蔚萱, 张雅馨, 等. 基于激光溯源的纳米台阶高度标准物质研制与计量技术[J]. 计量科学与技术, 2024, 68(2): 52-59.
|
|
Wang C Y, Jing W X, Zhang Y X, et al. Development and measurement technology of nanometer step height standard material based on laser tracing[J]. Quantitative Science and Technology, 2024, 68(2): 52-59. (in Chinese)
|
[12] |
陈宝钦. 光刻技术六十年[J]. 激光与光电子学进展, 2022, 59(9): 508-528.
|
|
Chen B Q. Sixty years of lithography technology[J]. Progress in Laser and Optoelectronics, 2022, 59(9): 508-528. (in Chinese)
|
[13] |
Sharma E, Rathi R, Misharwal J, et al. Evolution in lithography techniques: Microlithography to nanolithography[J]. Nanomaterials, 2022, 12(16), doi: 10.3390/nano12162754.
|
[14] |
任家轩, 方弘历, 杨斗豪, 等. 气相沉积技术制备氧化锰薄膜及其组分调控的研究进展[J]. 北京印刷学院学报, 2024, 32(3): 67-72.
|
|
Ren J X, Fang H L, Yang D H, et al. Research progress on the preparation of manganese oxide thin films by vapor deposition technology and its component control[J]. Journal of Beijing Institute of Graphic Communication, 2024, 32(3): 67-72. (in Chinese)
|
[15] |
Ou Y X, Wang H Q, Hua Q S, et al. Tribocorrosion behaviors of superhard yet tough Ti-C-N ceramic coatings[J]. Surface and Coatings Technology, 2022, 439, doi: 10.1016/j.surfcoat.2022.128448.
|
[16] |
马会中, 路军涛, 张兰. 等离子体增强化学气相沉积法制备类金刚石薄膜研究综述[J]. 科学技术与工程, 2023, 23(18): 7597-7606.
|
|
Ma H Z, Lu J T, Zhang L. Review of research on preparation of diamond-like carbon films by plasma enhanced chemical vapor deposition[J]. Science Technology and Engineering, 2023, 23(18): 7597-7606. (in Chinese)
|
[17] |
Hu Z Y, Ma F L, Shen L L, et al. Superior anti-corrosion performance on Cu substrate achieved by dense polypropylene coating with ultrahigh inhibition efficiency deposited via the environmental-friendly method[J]. Corrosion Science, 2021, 191, doi: 10.1016/j.corsci.2021.109783.
|
[18] |
Lee K, Hwang S, Kim D, et al. 3D stackable vertical-sensing electrochemical random-access memory using ion-permeable WS2 electrode for high-density neuromorphic systems[J]. Advanced Functional Materials, 2024, 34(27), doi: 10.1002/adfm.202313802.
|
[19] |
梅雪松, 段吉安, 李明, 等. “激光微纳制造”专题前言[J]. 中国激光, 2022, 49(10): 1-2.
|
|
Mei X S, Duan J A, Li M, et al. Preface to the special topic of “laser micro nano manufacturing”[J]. China Laser, 2022, 49(10): 1-2. (in Chinese)
|
[20] |
Song B W, Wang C W, Fan S Y, et al. Rapid construction of 3D biomimetic capillary networks with complex morphology using dynamic holographic processing[J]. Advanced Functional Materials, 2024, 34(1), doi: 10.1002/adfm.202305245.
|
[21] |
Yang S H, Su C Y, Gu S Y, et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci[J]. Optics Express, 2023, 31(9): 14174-14184.
|
[22] |
Zhou K, Xu J Y, Xiao G J, et al. A novel low-damage and low-abrasive wear processing method of Cf/SiC ceramic matrix composites: Laser-induced ablation-assisted grinding[J]. Journal of Materials Processing Technology, 2022, 302, doi: 10.1016/j.jmatprotec.2022.117503.
|
[23] |
Jaleh B, Mousavi S S, Sajjadi M, et al. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation[J]. Chemosphere, 2023, 315, doi: 10.1016/j.chemosphere.2022.137668.
|
[24] |
Chen J L, Liu Z, Su F H, et al. Surface modification of carbon fiber cloth by femtosecond laser direct writing technology[J]. Materials Letters, 2022, 323, doi: 10.1016/j.matlet.2022.132483.
|
[25] |
Tavasolyzadeh Z, Tang P, Hahn M B, et al. 2D and 3D micropatterning of mussel-inspired functional materials by direct laser writing[J]. Small, 2024, 20(13), doi: 10.1002/smll.202309394.
|
[26] |
孙靖尧, 吴大鸣, 刘颖, 等. 聚合物微纳制造技术[J]. 橡塑技术与装备, 2016, 42(10): 1-9.
|
|
Sun J Y, Wu D M, Liu Y, et al. Polymer micro nano manufacturing technology[J]. Rubber and Plastic Technology and Equipment, 2016, 42(10): 1-9. (in Chinese)
|
[27] |
杨志伟. 纳米压印光刻技术在中国半导体领域的应用与挑战[J]. 中国科技产业, 2024(6): 50-53.
|
|
Yang Z W. The Application and challenges of nanoimprint lithography technology in the semiconductor industry of China[J]. China’s Technology Industry, 2024(6): 50-53. (in Chinese)
|
[28] |
Naveed M A, Kim J, Ansari M A, et al. Single-step fabricable flexible metadisplays for sensitive chemical/biomedical packaging security and beyond[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31194-31202.
|
[29] |
Wang C H, Sun J X, Fan Y, et al. Discretely-supported transfer nanoimprint anti-reflection nanostructures on complex uneven surface of Fresnel lenses[J]. Nanotechnology, 2024, 35(5), doi: 10.1088/1361-6528/ad074e.
|
[30] |
Zhao G B, Ye G Y, Wu Z Z, et al. On-line angle self-correction strategy based on a cobweb-structured grating scale[J]. Measurement Science and Technology, 2021, 32(5), doi: 10.1088/1361-6501/abdd72.
|
[31] |
日媒:日本佳能公司宣布推出FPA-1200NZ2C纳米压印半导体制造设备[EB/OL]. (2023-11-03)[2024-07-18]. https://www.instrument.com.cn/news/20231106/690449.shtml.
|
|
Japanese media: Canon Inc. announced the launch of FPA-1200NZ2C nanoimprint lithography semiconductor manufacturing equipment[EB/OL]. (2023-11-03)[2024-07-18]. https://www.instrument.com.cn/news/20231106/690449.shtml. (in Chinese)
|