[1] |
黄宇, 刘梦溪, 陈海平, 等. “双碳”背景下液化天然气工业园区能源耦合技术研究[J]. 现代化工, 2023, 43(3): 213-216.
|
|
Huang Y, Liu M X, Chen H P, et al. Research on energy coupling technology in liquefied natural gas industrial parks under the background of “Dual Carbon”[J]. Modern Chemical Industry, 2023, 43(3): 213-216. (in Chinese)
|
[2] |
Guo Y, Luo L, Liu T, et al. A review of low-carbon technologies and projects for the global cement industry[J]. Journal of Environmental Sciences (China), 2024, 136(2): 682-697.
|
[3] |
Bao J, Yuan T, Song C X, et al. Thermodynamic analysis of a new double-pressure condensation power generation system recovering LNG cold energy for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17649-17661.
|
[4] |
Zonfrilli M, Facchino M, Serinelli R, et al. Thermodynamic analysis of cold energy recovery from LNG regasification[J]. Journal of Cleaner Production, 2023, doi: 10.1016/j.jclepro.2023.138443.
|
[5] |
杨静明. LNG冷能空分的工业化应用研究[J]. 当代化工研究, 2018(3): 93-94.
|
|
Yang J M. Research on industrial application of LNG cold energy air separation[J]. Modern Chemical Research, 2018(3): 93-94. (in Chinese)
|
[6] |
Gao T, Lin W S, Gu A Z. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized[J]. Energy Conversion and Management, 2011, 52(6): 2401-24044.
|
[7] |
Chang J, Zuo J, Lu K J, et al. Freeze desalination of seawater using LNG cold energy[J]. Water Research, 2016, 102: 282-293.
DOI
PMID
|
[8] |
He T, Chong Z, Zheng J J, et al. LNG cold energy utilization: Prospects and challenges[J]. Energy, 2019, 170: 557-568.
DOI
|
[9] |
王震, 孔盈皓, 李伟. “碳中和”背景下中国天然气产业发展综述[J]. 天然气工业, 2021, 41(8): 194-202.
|
|
Wang Z, Kong Y H, Li W. Overview of the development of China’s natural gas industry under the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(8): 194-202. (in Chinese)
|
[10] |
Sun W, Hu P, Chen Z S, et al. Performance of cryogenic thermoelectric generators in LNG cold energy utilization[J]. Energy Conversion and Management, 2005, 46(5): 789-796.
|
[11] |
杨经敏. LNG冷能发电梯级利用法的优化[J]. 油气储运, 2016, 35(4): 401-405.
|
|
Yang J M. Optimization of LNG cold energy elevator utilization method[J]. Oil and Gas Storage & Transportation, 2016, 35 (4): 401-405. (in Chinese)
|
[12] |
俞光灿, 李琦芬, 宋丽斐, 等. LNG冷能利用方式分类及其工艺流程[J]. 油气储运, 2019, 38(7): 728-737.
|
|
Yu G C, Li Q F, Song L F, et al. Classification and process flow of LNG cold energy utilization methods[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 728-737. (in Chinese)
|
[13] |
张小锋, 冯霄. LNG轻烃分离与乙烯冷分冷量联合[J]. 化工学报, 2014, 65(12): 4844-4849.
DOI
|
|
Zhang X F, Feng X. LNG light hydrocarbon separation and ethylene cold separation combined cooling capacity[J]. Journal of Chemical Engineering, 2014, 65(12): 4844-4849. (in Chinese)
|
[14] |
边海军, 徐文东, 李秀喜, 等. 液化天然气冷能用于商品天然气轻烃分离回收工艺及过程分析[J]. 现代化工, 2010, 30(7): 58-61.
|
|
Bian H J, Xu W D, Li X X, et al. Analysis of the process and application of liquefied natural gas cold energy in the separation and recovery of light hydrocarbons in commercial natural gas[J]. Modern Chemical Industry, 2010, 30(7): 58-61. (in Chinese)
|
[15] |
Du Y P, Ding Y L. Optimization of cold storage efficiency in a rankine-cycle-based cold energy storage system[J]. Energy Technology, 2017, 5(2): 267-276.
|
[16] |
徐文东, 段娇, 陈运文, 等. 液化天然气冷能利用技术及其产业化进展[J]. 天然气化工, 2013, 38(5): 79-84.
|
|
Xu W D, Duan J, Chen Y W, et al. Progress in technologies and industrialization of LNG cold energy utilization[J]. Natural Gas Chemical Industry, 2013, 38(5): 79-84. (in Chinese)
|
[17] |
吕俊, 吕志榕. 常温和低温相结合的橡胶粉碎工艺[J]. 天然气工业, 2011, 31(6): 107-110.
|
|
Lü J, Lü Z R. Rubber crushing process combining room temperature and low temperature[J]. Natural Gas Industry, 2011, 31(6): 107-110. (in Chinese)
|
[18] |
余黎明. 高效利用LNG冷能的途径探析[J]. 化学工业, 2014, 32(5): 1-12.
|
|
Yu L M. Exploration of efficient utilization of LNG cold energy[J]. Chemical Industry, 2014, 32(5): 1-12. (in Chinese)
|
[19] |
杜旭, 陈煜, 巨永林. 液化天然气(LNG)的长距离输送及其冷能利用[J]. 化工学报, 2018, 69(增刊2): 442-449.
|
|
Du X, Chen Y, Ju Y L. Long distance transportation of liquefied natural gas (LNG) and its cold energy utilization[J]. Journal of Chemical Engineering, 2018, 69(Suppl 2): 442-449. (in Chinese)
|
[20] |
贾琦月. 液化天然气项目中的管道保冷节能设计[J]. 化工设备与管道, 2020, 57(3): 67-71.
|
|
Jia Q Y. Energy saving design of pipeline cold insulation in liquefied natural gas projects[J]. Chemical Equipment and Pipeline, 2020, 57(3): 67-71. (in Chinese)
|
[21] |
Wang Y X, Sheng X Y, Wang S L. Analysis on the cold insulation structure and construction technique of the LNG low-temperature pipe[J]. Mechanical Engineering and Technology, 2016, 5(3): 287-292.
|
[22] |
付现桥, 陈珏伶, 郭旭, 等. 国内外关于LNG管道保冷层厚度设计相关标准分析[J]. 当代化工, 2014, 43(3): 356-359.
|
|
Fu X Q, Chen J L, Guo X, et al. Research on related standards for LNG pipe cold layer thickness design[J]. Contemporary Chemical Industry, 2014, 43(3): 356-359. (in Chinese)
|
[23] |
万新强, 孙碧君. 长距离天然气管道干空气干燥技术及应用[J]. 油气储运, 2007, 26(4): 26-32, 62, 65.
|
|
Wan X Q, Sun B J. Dry air drying technology and application for long-distance natural gas pipelines[J]. Oil & Gas Storage and Transportation, 2007, 26(4): 26-32, 62, 65. (in Chinese)
|
[24] |
Wang B X, Liu X H, Wang G D, et al. Correlation of microstructures and low temperature toughness in low carbon Mn-Mo-Nb pipeline steel[J]. Materials Science and Technology, 2013, 29: 1522-1528.
|
[25] |
王亚群, 王少炜, 范明龙. LNG接收站埋地管道腐蚀分析方法研究[J]. 全面腐蚀控制, 2023, 37(1): 13-18.
|
|
Wang Y Q, Wang S W, Fan M L. Research on corrosion analysis method for buried pipelines in LNG receiving stations[J]. Comprehensive Corrosion Control, 2023, 37(1): 13-18. (in Chinese)
|
[26] |
吴长春, 左丽丽. 关于中国智慧管道发展的认识与思考[J]. 油气储运, 2020, 39(4): 361-370.
|
|
Wu C C, Zuo L L. Understanding and reflection on the development of China's smart pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(4): 361-370. (in Chinese)
|
[27] |
Rao V V, Putra Z A, Bilad M R, et al. Optimization of LNG cold energy utilization via power generation, refrigeration and air separation[J]. Indonesian Journal of Science and Technology, 2020, 5(3): 321-333. (in Chinese)
|
[28] |
李俊, 陈煜. LNG冷能回收及梯级利用研究进展[J]. 制冷学报, 2022, 43(2): 1-12.
|
|
Li J, Chen Y. Research progress on LNG cold energy recovery and cascade utilization[J]. Journal of Refrigeration, 2022, 43(2): 1-12. (in Chinese)
|
[29] |
Chen X X, Zhao Y. Research on corrosion protection of buried steel pipeline[J]. Engineering, 2017, 9(5): 504-509.
|
[30] |
Allemand C. Pipelines of the future through digitalization[J]. Pipeline & Gas Journal, 2020, 247(10): 59-60.
|
[31] |
郜玉新. 复合防腐保温管道低温补口研究及应用[J]. 管道技术与设备, 2015(4): 36-38.
|
|
Gao Y X. Research and application of low-temperature joint repair for composite anti-corrosion and insulation pipelines[J]. Pipeline Technology and Equipment, 2015(4): 36-38. (in Chinese)
|
[32] |
罗凯, 陈保东, 李朝阳, 等. 液化天然气卫星站冷能梯级优化利用[J]. 化学工程, 2011, 39(11): 36-38, 48.
|
|
Luo K, Chen B D, Li C Y, et al. Optimization and utilization of cold energy cascade in liquefied natural gas satellite stations[J]. Chemical Engineering, 2011, 39(11): 36-38, 48. (in Chinese)
|
[33] |
袁丹, 丁际昭, 丁力. LNG冷能高效利用发展策略研究[J]. 广东化工, 2017, 44(19): 110-111, 118.
|
|
Yuan D, Ding J Z, Ding L. Research on development strategies for efficient utilization of LNG cold energy[J]. Guangdong Chemical, 2017, 44(19): 110-111, 118. (in Chinese)
|