前瞻科技 ›› 2024, Vol. 3 ›› Issue (1): 74-85.DOI: 10.3981/j.issn.2097-0781.2024.01.006
林天麟1,2,†(), 罗浩波1,2, 涂宇啸1,2, 梁冠琪1,2, 赵达1,2, 丁宁2, 石欣3, 王科3
收稿日期:
2023-09-12
修回日期:
2023-12-29
出版日期:
2024-03-20
发布日期:
2024-03-27
通讯作者:
†
作者简介:
林天麟,香港中文大学(深圳)助理教授。机器人与智能制造国家地方联合工程实验室常务副主任,深圳市人工智能研究院智能机器人中心主任。主要从事多机器人系统、现场机器人和协作机器人等研究。出版学术专著2部,发表论文60余篇,授权发明专利70余件。电子信箱:tllam@cuhk.edu.cn。
基金资助:
LAM Tin Lun1,2,†(), LUO Haobo1,2, TU Yuxiao1,2, LIANG Guanqi1,2, ZHAO Da1,2, DING Ning2, SHI Xin3, WANG Ke3
Received:
2023-09-12
Revised:
2023-12-29
Online:
2024-03-20
Published:
2024-03-27
Contact:
†
摘要:
月球和火星等行星表面上的熔岩管被视为人类科学考察基地和生态维持区域的优先选址。然而,熔岩管内部存在的坍塌物等障碍为熔岩管的无人化探索和改造带来了极大的挑战。模块化自重构机器人以其多功能性和可复用性等优势,成为在不可预测的非结构化环境中越障和操作物体的理想选择。文章简要介绍了模块化自重构机器人概况,重点讲述了该类机器人在熔岩管内移动与越障、采样与操作、辅助支撑这3个场景中的软硬件研究和应用前景。最后针对自重构机器人建设地外熔岩管基地所面临的挑战提出发展建议。
林天麟, 罗浩波, 涂宇啸, 梁冠琪, 赵达, 丁宁, 石欣, 王科. 自重构机器人探索地外熔岩管的应用前景[J]. 前瞻科技, 2024, 3(1): 74-85.
LAM Tin Lun, LUO Haobo, TU Yuxiao, LIANG Guanqi, ZHAO Da, DING Ning, SHI Xin, WANG Ke. Application Prospects of Self-reconfiguration Robots to Explore Extraterrestrial Lava Tubes[J]. Science and Technology Foresight, 2024, 3(1): 74-85.
图5 MSRR在熔岩管底部平滑区域拆散探索、中继通信
Fig. 5 Modular self-reconfiguration robot disassembled in the smooth area at the bottom of the lava tube to explore and forward communications
[1] | Sauro F, Pozzobon R, Massironi M, et al. Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology[J]. Earth-Science Reviews, 2020, 209, doi: 10.1016/j.earscirev.2020.103288. |
[2] | Ding J, Xie G, Guo L, et al. Karst cave as terrestrial simulation platform to test and design human base in lunar lava tube[J]. Space: Science & Technology, 2022, 2022, doi: 10.34133/2022/9875780. |
[3] | Yim M, Duff D G, Roufas K D. PolyBot: A modular reconfigurable robot[C]// Proceedings of the 2000 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2002: 514-520. |
[4] |
Baca J, Woosley B, Dasgupta P, et al. Configuration discovery of modular self-reconfigurable robots: Real-time, distributed, IR+XBee communication method[J]. Robotics and Autonomous Systems, 2017, 91: 284-298.
DOI URL |
[5] | Zhao D, Lam T L. SnailBot: A continuously dockable modular self-reconfigurable robot using rocker-bogie suspension[C]// Proceedings of the 2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2022: 4261-4267. |
[6] | Liang G Q, Luo H B, Li M, et al. FreeBOT: A freeform modular self-reconfigurable robot with arbitrary connection point-design and implementation[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 6506-6513. |
[7] |
Luo H B, Lam T L. Auto-optimizing connection planning method for chain-type modular self-reconfiguration robots[J]. IEEE Transactions on Robotics, 2023, 39(2): 1353-1372.
DOI URL |
[8] | Chirikjian G S. Kinematics of a metamorphic robotic system[C]// Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2022: 449-455. |
[9] | Romanishin J W, Gilpin K, Claici S, et al. 3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions[C]// Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 1925-1932. |
[10] | Thalamy P, Piranda B, Bourgeois J. Engineering efficient and massively parallel 3D self-reconfiguration using sandboxing, scaffolding and coating[J]. Robotics and Autonomous Systems, 2021: 146, doi: 10.1016/j.robot.2021.103875. |
[11] | Lee W, Hirai M, Hirose S. Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor[J]. Advanced Robotics, Taylor & Francis, 2013, 27(14): 1099-1111. |
[12] | Mondada F, Pettinaro G C, Guignard A, et al. Swarm-bot: A new distributed robotic concept[J]. Autonomous Robots, 2004, 17(2): 193-221. |
[13] |
Granosik G, Hansen M G, Borenstein J. The OmniTread serpentine robot for industrial inspection and surveillance[J]. Industrial Robot, 2005, 32(2): 139-148.
DOI URL |
[14] | Liu C, Yu S, Yim M. Motion planning for variable topology trusses: Reconfiguration and locomotion[DB/OL]. arXiv preprint: 2108.00309, 2021. |
[15] | Lyder A, Garcia R F M, Stoy K. Mechanical design of Odin, an extendable heterogeneous deformable modular robot[C]// Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2008: 883-888. |
[16] | Tu Y X, Liang G Q, Lam T L. FreeSN: A freeform strut-node structured modular self-reconfigurable robot-design and implementation[C]// Proceedings of the 2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2022: 4239-4245. |
[17] |
Liu C, Lin Q, Kim H, et al. SMORES-EP, a modular robot with parallel self-assembly[J]. Autonomous Robots, 2023, 47(2): 211-228.
DOI |
[18] |
Spröwitz A, Moeckel R, Vespignani M, et al. Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot[J]. Robotics and Autonomous Systems, 2014, 62(7): 1016-1033.
DOI URL |
[19] |
Murata S, Yoshida E, Kamimura A, et al. M-TRAN: Self-reconfigurable modular robotic system[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(4): 431-441.
DOI URL |
[20] |
Shen W M, Krivokon M, Chiu H, et al. Multimode locomotion via SuperBot reconfigurable robots[J]. Autonomous Robots, 2006, 20(2): 165-177.
DOI URL |
[21] | 刘永进, 余旻婧, 叶子鹏, 等. 自重构模块化机器人路径规划方法综述[J]. 中国科学: 信息科学, 2018, 48(2): 143-176. |
Liu Y J, Yu M J, Ye Z P, et al. Path planning for self-reconfigurable modular robots: A survey[J]. Science China Information Sciences, 2018, 48(2): 143-176. (in Chinese) | |
[22] |
Butler Z, Kotay K, Rus D, et al. Generic decentralized control for lattice-based self-reconfigurable robots[J]. The International Journal of Robotics Research, 2004, 23(9): 919-937.
DOI URL |
[23] | Wu Q, Wang Y, Cao G, et al. Locomotion control of distributed self-reconfigurable robot based on cellular automata[M]// Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005: 179-188. |
[24] | Butler Z, Rus D. Distributed motion planning for 3D modular robots with unit-compressible modules[M]// BoissonnatJ D, BurdickJ, GolabergK, et al. Algorithmic Foundation of Robotics V. Berlin, Heidelberg: Springer, 2004: 435-451. |
[25] |
Fitch R, Butler Z. Million module March: Scalable locomotion for large self-reconfiguring robots[J]. The International Journal of Robotics Research, 2008, 27(3/4): 331-343.
DOI URL |
[26] | Ababsa T, Djedi N, Duthen Y, et al. Decentralized approach to evolve the structure of metamorphic robots[C]// Proceedings of the 2013 IEEE Symposium on Artificial Life (ALife). Piscataway: IEEE Press, 2013: 74-81. |
[27] |
Yoshida E, Murata S, Kamimura A, et al. A self-reconfigurable modular robot[J]. International Journal of Robotics Research, 2002, 21(10/11): 903-915.
DOI URL |
[28] | Luo H, Li M, Liang G, et al. An obstacle-crossing strategy based on the fast self-reconfiguration for modular sphere robots[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 3296-3303. |
[29] |
Luo H B, Lam T L. Adaptive flow planning of modular spherical robot considering static gravity stability[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4228-4235.
DOI URL |
[30] | Yim M. Locomotion with a unit-modular reconfigurable robot[R]. Stanford: Stanford University, 1995. |
[31] |
Christensen D J, Schultz U P, Stoy K. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots[J]. Robotics and Autonomous Systems, 2013, 61(9): 1021-1035.
DOI URL |
[32] |
Yim M, Roufas K, Duff D, et al. Modular reconfigurable robots in space applications[J]. Autonomous Robots, 2003, 14(2): 225-237.
DOI URL |
[33] | Pouya S, van den Kieboom J, Spröwitz A, et al. Automatic gait generation in modular robots:“To oscillate or to rotate; that is the question”[C]// Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2010: 514-520. |
[34] | Moreno R, Gomez J. Central pattern generators and hormone inspired messages: A hybrid control strategy to implement motor primitives on chain type modular reconfigurable robots[C]// Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 1014-1019. |
[35] | Lordos G, Brown M J, Latyshev K, et al. WORMS: Field-reconfigurable robots for extreme lunar terrain[C]// Proceedings of the 2023 IEEE Aerospace Conference. Piscataway: IEEE Press, 2023, doi: 10.1109/AERO55745.2023.10115833. |
[36] | Daudelin J, Jing G, Tosun T, et al. An integrated system for perception-driven autonomy with modular robots[J]. Science Robotics, 2018, doi: 10.1126/scirobotics.aat498. |
[37] |
Zong L, Liang G Q, Lam T L. Kinematics modeling and control of spherical rolling contact joint and manipulator[J]. IEEE Transactions on Robotics, 2023: 39(1): 738-754.
DOI URL |
[38] | Guan Y, Jiang L, Zhang X. Mechanical design and basic analysis of a modular robot with special climbing and manipulation functions[C]// Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2007: 502-507. |
[39] | Yu C H, Nagpal R. Self-adapting modular robotics: A generalized distributed consensus framework[C]// Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 1881-1888. |
[40] |
Campbell J, Pillai P. Collective actuation[J]. The International Journal of Robotics Research, 2008, 27(3/4): 299-314.
DOI URL |
[41] | Swissler P, Rubenstein M. ireAnt3D: A 3D self-climbing robot towards non-latticed robotic self-assembly[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 3340-3347. |
[42] | Pickem D, Egerstedt M. Self-reconfiguration using graph grammars for modular robotics[J]. IFAC Proceedings Volumes, 2012, 45(9): 313-318. |
[43] |
Støy K. Using cellular automata and gradients to control self-reconfiguration[J]. Robotics and Autonomous Systems, 2006, 54(2): 135-141.
DOI URL |
[44] | Thalamy P, Piranda B, Bourgeois J. 3D coating self-assembly for modular robotic scaffolds[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: ACM Press, 2020: 11688-11695. |
[45] |
Belke C H, Holdcroft K, Sigrist A, et al. Morphological flexibility in robotic systems through physical polygon meshing[J]. Nature Machine Intelligence, 2023, 5: 669-675.
DOI |
[46] |
Wei H X, Chen Y D, Tan J D, et al. Sambot: A self-assembly modular robot system[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 745-757.
DOI URL |
[47] | Zhu Y, Zhao J, Cui X, et al. Design and implementation of UBot: A modular self-reconfigurable robot[C]// Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2013: 1217-1222. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号