[1] |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
DOI
|
[2] |
郭旭升. 以关键核心技术突破带动我国深层、超深层油气勘探开发突破[J]. 能源, 2022, 15(9): 46-50.
|
[3] |
王陆新, 潘继平, 杨丽丽. 全球深水油气勘探开发现状与前景展望[J]. 石油科技论坛, 2020, 39(2): 31-37.
|
[4] |
张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10): 1447-1477.
|
[5] |
杨金华, 郭晓霞. 世界深水油气勘探开发态势及启示[J]. 石油科技论坛, 2014, 33(5): 49-55.
|
[6] |
Zampra M, Broussard P N, Stephens M P. The top 10 mud-related concerns in deepwater drilling operations[C]// Proceedings of the SPE International Petroleum Conference and Exhibition in Mexico. Richardson: SPE, 2000: SPE-59019-MS.
|
[7] |
Elward-Berry J, Thomas E W. Rheologically stable deep-water drilling fluid development and application[C]// Proceedings of the IADC/SPE Drilling Conference. Richardson: IADC/SPE, 1994: SPE-27453-MS.
|
[8] |
Rgrd E, Eva A, Gunnar F, et al. Design of water-based drilling-fluid systems for deep-water norway[C]// Proceedings of the IADC/SPE Drilling Conference. Richardson: SPE, 2001: SPE-67834-MS.
|
[9] |
王雪峰, 李林, 王国雨, 等. 南海深水盆地油气地质特征及勘探方向[J]. 海洋地质前沿, 2021, 37(1): 1-10.
|
[10] |
中国石油集团经济技术研究院. 2022年国内外油气行业发展报告[R]. 北京: 中国石油集团经济技术研究院, 2022.
|
[11] |
陈彬, 李超, 张春杰, 等. 深水合成基钻井液高温高压流变特性[J]. 科学技术与工程, 2022, 22(4): 1408-1415.
|
[12] |
高涵, 许林, 许明标, 等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液, 2018, 35(3): 60-67.
|
[13] |
李超, 罗健生, 刘刚, 等. FLAT-PRO深水合成基钻井液恒流变作用机理研究[J]. 广东化工, 2021, 48(4): 242-243, 241.
|
[14] |
胡文军, 向雄, 杨洪烈. 深水FLAT-PRO深水恒流变合成基钻井液及其应用[J]. 钻井液与完井液, 2017, 34(2):15-20.
|
[15] |
蒋官澄, 毛蕴才, 周宝义, 等. 保护油气层钻井液技术研究进展与发展趋势等[J]. 钻井液与完井液, 2018, 35(2): 1-16.
|
[16] |
刘均一. 高性能环保水基钻井液技术研究新进展[J]. 精细石油化工进展, 2018, 19(6): 29-34.
|
[17] |
Bland R G, Waughman R R, Tomkins P G, et al. Water-base alternative to oil-base muds: Do they actually exist?[C]// Proceedings of the IADC/SPE Drilling Conference. Richardson: IADC/SPE, 2002: SPE-74542-MS.
|
[18] |
Nicora L F. Zirconium citrate: A new generation dispersant for environmentally friendly drilling fluids[C]// Proceedings of the IADC/SPE Asia Pacific Drilling Technology. Richardson: IADC/SPE, 1998: SPE-47832-MS.
|
[19] |
Redburn M, Dearing H, Growcock F. Field lubricity measurements correlate with improved performance of novel water-based drilling fluid[C]// Proceedings of the 11th Offshore Mediterranean Conference and Exhibition. Richardson: IADC/SPE, 2013: OMC-2013-159.
|
[20] |
龙大清, 樊相生, 王昆, 等. 应用于中国页岩气水平井的高性能水基钻井液[J]. 钻井液与完井液, 2016, 33(1): 17-21.
|
[21] |
康圆, 孙金声, 吕开河, 等. 一种页岩气疏水强封堵水基钻井液[J]. 钻井液与完井液, 2021, 38(4): 442-448.
|
[22] |
闫丽丽, 李丛俊, 张志磊, 等. 基于页岩气“水替油”的高性能水基钻井液技术[J]. 钻井液与完井液, 2015, 32(5): 1-7.
|
[23] |
孙金声, 黄贤斌, 吕开河, 等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 73-81.
|
[24] |
蒋官澄, 宣扬, 王金树, 等. 仿生固壁钻井液体系的研究与现场应用[J]. 钻井液与完井液, 2014, 31(3): 1-5, 95.
|
[25] |
蒋官澄, 倪晓骁, 李武泉, 等. 超双疏强自洁高效能水基钻井液[J]. 石油勘探与开发, 2020, 47(2): 390-398.
DOI
|
[26] |
Enright D P, Dye W M, Smith M F. An environmentally safe water-based alternative to oil muds[J]. SPE Drilling Engineering, 1992, 7(1): 15-19.
DOI
URL
|
[27] |
刘晓栋, 谷卉琳, 马永乐, 等. 高性能抗高温聚合物钻井液研究与应用[J]. 钻井液与完井液, 2018, 35(1): 13-20.
|
[28] |
赵虎, 孙举, 司西强, 等. ZY-APD高性能水基钻井液研究及在川南地区的应用[J]. 天然气勘探与开发, 2019, 42(3): 139-145.
|
[29] |
狄明利, 赵远远, 邱文发. FLAT-PRO合成基钻井液在南海东部超深水井的应用[J]. 广东化工, 2019, 46(20): 38-40.
|
[30] |
张弌, 单海霞, 李彬, 等. 生物质合成基钻井液性能评价[J]. 油田化学, 2019, 36(4): 594-599.
|
[31] |
王平金, 罗平亚. 三磺处理剂高温交联对泥浆性能的影响[J]. 天然气工业, 1992(5): 45-53, 8.
|
[32] |
崔小勃, 丁换子, 曹园. 一种高温高压钻井液的性能评价及现场应用[J]. 内蒙古石油化工, 2015, 41(2): 19-21.
|
[33] |
Marinescu P, Young S, Iskander G R. New generation ultra-high temperature synthetic-based drilling fluid; development and best practices for extreme conditions and ECD management[C]// Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference. Richardson: SPE, 2014: SPE-172056-MS.
|
[34] |
周研. 抗高温高密度油基钻井液体系研究[D]. 成都: 西南石油大学, 2019.
|
[35] |
王建华, 李建男, 闫丽丽, 等. 油基钻井液用纳米聚合物封堵剂的研制[J]. 钻井液与完井液, 2013, 30(6): 5-8, 91.
|
[36] |
覃勇, 蒋官澄, 邓正强, 等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液, 2016, 33(1): 6-10.
|
[37] |
史凯娇, 徐同台. 甲酸铯/钾无固相钻井液和完井液研究[J]. 石油钻探技术, 2011, 39(2): 73-76.
|
[38] |
李炎军, 马二龙, 张万栋, 等. 莺琼盆地高温高密度水基钻井液流变性调控方法[J]. 科学技术与工程, 2020, 20(26): 10740-10744.
|
[39] |
王岩, 孙金声, 黄贤斌, 等. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能[J]. 钻井液与完井液, 2018, 35(2): 23-28.
|
[40] |
Xuan Y, Jiang G C, Li Y Y, et al. Biodegradable oligo (poly-L-lysine) as a high-performance hydration inhibitor for shale[J]. RSC Advances, 2015(5): 84947-84958.
|
[41] |
Jiang G C, Xuan Y, Wu X Z, et al. Bionic shale inhibitor and its preparation method and drilling fluid and its application: 201510064987.8[P]. 2016-02-03.
|
[42] |
Ni X X, Jiang G C, Li Y Y, et al. Synthesis of superhydrophobic nanofluids as shale inhibitor and study of the inhibition mechanism[J]. Applied Surface Science, 2019, 484: 957-965.
DOI
URL
|
[43] |
Jiang G C, Ma L, Wang Y L, et al. A method for air-wet inversion of core surface using cationic fluorocarbon surfactants: 201110353364.4[P]. 2013-11-06.
|
[44] |
Jiang G C, Ni X X, Gao D L, et al. Polymeric super double phosphite and super double phosgene strong self-cleaning and high performance water-based drilling fluid: 201810503390.2[P]. 2019-04-16.
|
[45] |
孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10.
|
[46] |
孙金声, 杨贤友, 刘进京, 等. 大情字井地区储层损害机理及保护储层技术[J]. 钻井液与完井液, 2002, 19(6): 39-43, 152.
|
[47] |
Jiang G C, Li Y Y, Kong Y, et al. Application of acrylate copolymers in the drilling-in completion fluid for low and extra low permeability reservoirs[J]. Energy Sources Part A-Recovery Utilization And Environmental Effects, 2015, 37(6): 633-641.
|
[48] |
蒋官澄, 宣扬, 王玺, 等. 适用于低渗透特低渗透储层的润湿反转剂和储层保护剂组合物及其应用: 105131913B[P]. 2015-12-09.
|
[49] |
Jiang G C, Sun J S, He Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2022, 18: 129-142.
DOI
URL
|
[50] |
蒋官澄, 张县民, 王乐, 等. 双阳离子氟碳表面活性剂及其制备方法和作为双疏型润湿反转剂的应用和钻井液及其应用: 106634894A[P]. 2017-05-10.
|
[51] |
Jiang G C, Xuan Y, Wang X, et al. Reservoir protecting agent composition, drilling fluid for middle permeability reservoirs and use thereof: 9353305[P]. 2016-05-31.
|
[52] |
马英文, 刘小刚. 抗高温无固相储层保护钻井液体系[J]. 石油钻采工艺, 2018, 40(6): 726-729.
|
[53] |
孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发, 2018, 45(4): 713-718.
DOI
|
[54] |
蒋官澄, 黄凯, 李新亮, 等. 抗高温高密度无土相柴油基钻井液室内研究[J]. 石油钻探技术, 2016, 44(6): 24-29.
|
[55] |
史赫, 蒋官澄, 王国帅, 等. 恒流变合成基钻井液关键机理研究[J]. 钻井液与完井液, 2020, 37(1): 31-37.
|
[56] |
蒋官澄, 史赫, 贺垠博. 生物柴油基恒流变钻井液体系[J]. 石油勘探与开发, 2022, 49(1): 173-182.
DOI
|
[57] |
侯岳, 刘春生, 刘聃, 等. 海域天然气水合物浅软地层水平井钻井液技术[J]. 钻探工程, 2022, 49(2): 16-21.
|
[58] |
孙金声, 程远方, 秦绪文, 等. 南海天然气水合物钻采机理与调控研究进展[J]. 中国科学基金, 2021, 35(6): 940-951.
|
[59] |
Hao S Q. A study to optimize drilling fluids to improve borehole stability in natural gas hydrate frozen ground[J]. Journal of Petroleum Science and Engineering, 2011, 76: 109-115.
DOI
URL
|
[60] |
王韧, 孙金声, 孙慧翠, 等. 不同驱动力条件下改性淀粉、羧甲基纤维素钠和黄原胶对水合物形成的影响[J]. 中国石油大学学报(自然科学版), 2021, 45(1): 127-136.
|
[61] |
Wang R, Liu T L, Ning F L, et al. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study[J]. Journal of Energy Chemistry, 2019, 30: 90-100.
DOI
|
[62] |
李轩, 黄维安, 孙金声, 等. 核磁共振法研究钻井液侵入对甲烷水合物沉积层分解及渗透率的影响[J]. 中国石油大学学报(自然科学版), 2022, 46(6): 11-20.
|
[63] |
Wang X X, Jiang G C, Wang G S, et al. Application of a biomimetic wellbore stabilizer with strong adhesion performance for hydrate reservoir exploitation[J]. Fuel, 2023, 337, doi: 10.1016/j.fuel.2022.127184.
DOI
|
[64] |
Ghojogh J N. Application of smart technologies in drilling fluids[EB/OL]. [2022-01-22]. https://doi.org/10.13140/RG.2.1.1939.8647.
|
[65] |
孙敏, 冯典英. 智能材料技术[M]. 北京: 国防工业出版社, 2014.
|
[66] |
Spiecker P M, Entchev P B U S, Gupta R, et al. Method and apparatus for managing variable density drilling mud: 20090050374[P]. 2009-02-26.
|
[67] |
Shi H, Jiang G C, Shi H,, et al. Study on morphology and rheological property of organic clay dispersions in soybean oil fatty acid ethyl ester over a wide temperature range[J]. ACS Omega, 2020, 5(4): 1851-1861.
DOI
PMID
|
[68] |
Mansour A. Experimental study and modeling of smart loss circulation materials; advantages and promises[D]. Colorado: Colorado School of Mines, 2017.
|
[69] |
孙金声, 汪世国, 张毅, 等. 水基钻井液成膜技术研究[J]. 钻井液与完井液, 2003, 20(6): 9-13, 72.
|
[70] |
Vryzas Z, Kelessidis V C, Bowman M B J, et al. Smart magnetic drilling fluid with in-situ rheological controllability using Fe3O4 nanoparticles[C]// Proceedings of the SPE Middle East Oil & Gas Show and Conference. Richardson: SPE, 2017, doi: 10.2118/183906-MS.2017.
DOI
|
[71] |
蒋官澄, 贺垠博, 崔物格, 等. 基于盐响应型两性离子聚合物的饱和盐水钻井液[J]. 石油勘探与开发, 2019, 46(2): 385-390.
DOI
|
[72] |
贺垠博, 蒋官澄, 董腾飞, 等. 盐响应聚合物刺激响应机理及在饱和盐水钻井液中的应用[J]. 石油勘探与开发, 2020, 47(5): 1052-1058.
DOI
|
[73] |
王国帅, 蒋官澄, 贺垠博, 等. pH刺激响应型抗高温可逆转乳化剂研制与评价[J]. 钻井液与完井液, 2021, 38(5): 552-559.
|
[74] |
孙金声, 赵震, 白英睿, 等. 智能自愈合凝胶研究进展及在钻井液领域的应用前景[J]. 石油学报, 2020, 41(12): 1706-1718.
|
[75] |
孙金声, 雷少飞, 白英睿, 等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 100-110.
|