前瞻科技 ›› 2022, Vol. 1 ›› Issue (2): 121-133.DOI: 10.3981/j.issn.2097-0781.2022.02.009
收稿日期:
2022-05-26
修回日期:
2022-05-30
出版日期:
2022-06-20
发布日期:
2022-08-18
通讯作者:
彭晓彤
作者简介:
柳双权,助理研究员。主要研究方向为深海地质与地球化学。电子信箱: lsq@idsse.ac.cn。基金资助:
LIU Shuangquan(), PENG Xiaotong(
)
Received:
2022-05-26
Revised:
2022-05-30
Online:
2022-06-20
Published:
2022-08-18
Contact:
PENG Xiaotong
摘要:
在简要分析世界主要国家深渊技术发展的基础上,梳理了中国深渊技术研发和科学研究所取得的主要进展,并对未来深渊科技探索方向进行展望,为中国后续深渊科技发展提供参考。
柳双权, 彭晓彤. 深渊科技进展与展望[J]. 前瞻科技, 2022, 1(2): 121-133.
LIU Shuangquan, PENG Xiaotong. Progress and Prospect of the Hadal Science and Technology[J]. Science and Technology Foresight, 2022, 1(2): 121-133.
参数 | 新Alvin | Nautile | Shinkai 6500 | MIR-1/MIR-2 | 蛟龙 | Limiting Factor | 奋斗者 |
---|---|---|---|---|---|---|---|
国家 | 美国 | 法国 | 日本 | 俄罗斯 | 中国 | 美国 | 中国 |
深度/m | 6500 | 6000 | 6500 | 6000 | 7000 | 全海深 | 全海深 |
观察员/驾驶员人数 | 2/1 | 1/2 | 1/2 | 2/1 | 2/1 | 1/1 | 2/1 |
长×高×宽/ (m×m×m) | 7.0×3.68×2.6 | 8.0×3.81×2.7 | 8.2×3.45×3.6 | 7.8×3.0×3.8 | 8.2×3.4×3.0 | 4.6×1.9×3.7 | 10.3×4.4×3.2 |
质量/t | 20.4 | 18.5 | 25.2 | 18.6 | 22.0 | 12.5 | 36.0 |
耐压壳材料 | 钛合金 | 钛合金 | 钛合金 | 镍钢 | 钛合金 | 钛合金 | 钛合金 |
内直径/m | 1.98 | 2.1 | 2.0 | 2.1 | 2.1 | 1.5 | 1.8 |
观测窗直径/mm | 3×177.8(前) 2×127(侧) | 1×120(前) 2×120(侧) | 1×120(前) 2×120(侧) | 1×200(前) 2×120(侧) | 1×200(前) 2×120(侧) | — | 1×120(前) 2×120(侧) |
生命支持时间/h | 72 | 143 | 128 | 82 | 84 | 96 | 87 |
最大速度/kn | 2.0 | 2.5 | 2.5 | 5.0 | 2.5 | 2.0 | 2.5 |
有效载荷/kg | 181.4 | 200 | 200 | 290 | 220 | 220 | 200 |
电池能量/(kW·h) | 57.6 | 50.0 | 86.4 | 100.0 | 110.0 | 65.0 | 102.8 |
水下工作时间/h | 6~10 | 4~5 | 8 | 17~20 | 12 | 16 | 15 |
表1 全球具备进入6000 m水深的载人潜水器的技术指标与性能参数
参数 | 新Alvin | Nautile | Shinkai 6500 | MIR-1/MIR-2 | 蛟龙 | Limiting Factor | 奋斗者 |
---|---|---|---|---|---|---|---|
国家 | 美国 | 法国 | 日本 | 俄罗斯 | 中国 | 美国 | 中国 |
深度/m | 6500 | 6000 | 6500 | 6000 | 7000 | 全海深 | 全海深 |
观察员/驾驶员人数 | 2/1 | 1/2 | 1/2 | 2/1 | 2/1 | 1/1 | 2/1 |
长×高×宽/ (m×m×m) | 7.0×3.68×2.6 | 8.0×3.81×2.7 | 8.2×3.45×3.6 | 7.8×3.0×3.8 | 8.2×3.4×3.0 | 4.6×1.9×3.7 | 10.3×4.4×3.2 |
质量/t | 20.4 | 18.5 | 25.2 | 18.6 | 22.0 | 12.5 | 36.0 |
耐压壳材料 | 钛合金 | 钛合金 | 钛合金 | 镍钢 | 钛合金 | 钛合金 | 钛合金 |
内直径/m | 1.98 | 2.1 | 2.0 | 2.1 | 2.1 | 1.5 | 1.8 |
观测窗直径/mm | 3×177.8(前) 2×127(侧) | 1×120(前) 2×120(侧) | 1×120(前) 2×120(侧) | 1×200(前) 2×120(侧) | 1×200(前) 2×120(侧) | — | 1×120(前) 2×120(侧) |
生命支持时间/h | 72 | 143 | 128 | 82 | 84 | 96 | 87 |
最大速度/kn | 2.0 | 2.5 | 2.5 | 5.0 | 2.5 | 2.0 | 2.5 |
有效载荷/kg | 181.4 | 200 | 200 | 290 | 220 | 220 | 200 |
电池能量/(kW·h) | 57.6 | 50.0 | 86.4 | 100.0 | 110.0 | 65.0 | 102.8 |
水下工作时间/h | 6~10 | 4~5 | 8 | 17~20 | 12 | 16 | 15 |
[1] |
Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: The ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
DOI URL |
[2] |
Tengberg A, De Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography-A review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294.
DOI URL |
[3] |
Linley T D, Gerringer M E, Yancey P H, et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 114: 99-110.
DOI URL |
[4] |
Jamieson A J, Fujii T, Solan M, et al. HADEEP: Free-falling landers to the deepest places on Earth[J]. Marine Technology Society Journal, 2009, 43(5): 151-160.
DOI URL |
[5] | 陈俊, 张奇峰, 李俊, 等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 36(1): 63-69. |
[6] | White M P, Sowers D, Egan K, et al. Cruise report: EX-21-02, 2021 technology demonstration (AUV & mapping)[R]. NOAA, https://doi.org/10.25923/vvcg-1x72. |
[7] |
Kato C, Li L, Tamaoka J, et al. Molecular analyses of the sediment of the 11000-m deep Mariana Trench[J]. Extremophiles, 1997, 1(3): 117-123.
PMID |
[8] | Takai K, Inoue A, Horikoshi K. Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11000 m deep Mariana Trench[J]. International Journal of Systematic Bacteriology, 1999, 49(2): 619-628. |
[9] | Momma H, Watanabe M, Hashimoto K, et al. Loss of the full ocean depth ROV Kaiko-Part 1: ROV Kaiko-A review[C]// Proceedings of the International Offshore and Polar Engineering Conference. 2004: 191-193. |
[10] |
Yoshida H, Ishibashi S, Watanabe Y, et al. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth[J]. Marine Technology Society Journal, 2009, 43 (5): 87-96.
DOI URL |
[11] |
Nunoura T, Nishizawa M, Hirai M, et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench[J]. Microbes and Environments, 2018, 33(2): 186-194.
DOI PMID |
[12] |
Nakajoh H, Murashima T, Sugimoto F. Development of full depth fiber optic cable ROV(UROV11K) system[C]// OCEANS 2018 MTS/IEEE Charleston. Piscataway: IEEE Press, 2018, doi: 10.1109/OCEANS.2018.8604795.
DOI |
[13] |
Gvirtzman Z, Stern R J. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling[J]. Tectonics, 2004, doi: 10.1029/2003TC001581.
DOI |
[14] | 秦四清, 李培, 薛雷, 等. 环太平洋地震带巨震预测[J]. 地球物理学进展, 2015, 30(2): 540-558. |
[15] |
Plank T, Manning C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352.
DOI URL |
[16] |
Du M, Peng X, Seyfried W E, et al. Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone[J]. Geochemical Perspectives Letters, 2019, doi: 10.7185/geochemlet.1916.
DOI |
[17] |
Peng X, Guo Z, Du M, et al. Past endolithic life in metamorphic ocean crust[J]. Geochemical Perspectives Letters, 2020, 14: 14-19.
DOI URL |
[18] |
Li J, Chen Z, Li X, et al. The sources of organic carbon in the deepest ocean: Implication from bacterial membrane lipids in the Mariana Trench zone[J]. Frontiers in Earth Science, 2021, doi: 10.3389/feart.2021.653742.
DOI |
[19] |
Nan J, King H E, Delen G, et al. The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean[J]. Geology, 2020, 49(3): 330-334.
DOI URL |
[20] | Nunoura T, Takaki Y, Hirai M, et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): E1230-E1236. |
[21] |
Itou M, Matsumura I, Noriki S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2000, 47(10): 1987-1998.
DOI URL |
[22] |
Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, doi: 10.1016/j.epsl.2021.116870.
DOI |
[23] |
Glud R N, Wenzhoefer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
DOI URL |
[24] |
Liu S, Peng X. Organic matter diagenesis in hadal setting: Insights from the pore-water geochemistry of the Mariana Trench sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 22-31.
DOI URL |
[25] |
Thamdrup B, Schauberger C, Larsen M, et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, doi: 10.1073/pnas.2104529118.
DOI |
[26] | Jamieson A. The hadal zone: Life in the deepest oceans[M]. Cambridge: Cambridge University Press, 2015: 322-362. |
[27] | Wang K, Shen Y, Yang Y, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation[J]. Nature Ecology & Evolution, 2019, 3(5): 823-833. |
[28] |
Mu Y, Bian C, Liu R, et al. Whole genome sequencing of a snailfish from the Yap Trench (- 7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea[J]. PLOS Genetics, 2021, doi: 10.1371/journal.pgen.1009530.
DOI |
[29] |
Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591(7848): 66-71.
DOI URL |
[30] |
Yang H, Peng X, Gooday A J, et al. Magnetic foraminifera thrive in the Mariana Trench[J]. Geochemical Perspectives Letters, 2022, 21: 23-27.
DOI URL |
[31] | Kato C, Li L, Nogi Y, et al. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters[J]. Applied & Environmental Microbiology, 1998, 64(4): 1510-1513. |
[32] |
Zhou Y L, Mara P, Cui G J, et al. Microbiomes in the Challenger Deep slope and bottom-axis sediments[J]. Nature Communications, 2022, doi: 10.1038/s41467-022-29144-4.
DOI |
[33] |
Blankenship L E, Levin L A. Extreme food webs: Foraging strategies and diets of scavenging amphipods from the ocean’s deepest 5 kilometers[J]. Limnology and Oceanography, 2007, 52(4): 1685-1697.
DOI URL |
[34] |
Peng X, Chen M, Chen S, et al. Microplastics contaminate the deepest part of the world,s ocean[J]. Geochemical Perspectives Letters, 2018, doi: 10.7185/geochemlet.1829.
DOI |
[35] |
Jamieson A J, Brooks L, Reid W, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, doi: 10.1038/s41467-020-17045-3.
DOI |
[36] | Dasgupta S, Peng X, Chen S, et al. Toxic anthropogenic pollutants reach the deepest ocean on Earth[J]. Geochemical Perspectives Letters, 2018, 7: 22-26. |
[37] |
Sun R, Yuan J, Sonke J E, et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna[J]. Nature Communications, 2020, doi: 10.1038/s41467-020-17045-3.
DOI |
[38] |
Liu M, Xiao W, Zhang Q, et al. Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, doi: 10.1073/pnas.2102629118.
DOI |
[1] | 徐文, 李建龙, 李一平, 陈惠芳, 杨绍琼, 曾俊宝, 王延辉. 无人潜水器组网观测探测技术进展与展望[J]. 前瞻科技, 2022, 1(2): 60-78. |
[2] | 吴有生, 司马灿, 朱忠, 李龙, 倪天. 海洋装备技术的重点发展方向[J]. 前瞻科技, 2022, 1(2): 20-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号